Fixpoint semantics for logic programming a survey
نویسنده
چکیده
The variety of semantical approaches that have been invented for logic programs is quite broad, drawing on classical and many-valued logic, lattice theory, game theory, and topology. One source of this richness is the inherent non-monotonicity of its negation, something that does not have close parallels with the machinery of other programming paradigms. Nonetheless, much of the work on logic programming semantics seems to exist side by side with similar work done for imperative and functional programming, with relatively minimal contact between communities. In this paper we summarize one variety of approaches to the semantics of logic programs: that based on fixpoint theory. We do not attempt to cover much beyond this single area, which is already remarkably fruitful. We hope readers will see parallels with, and the divergences from the better known fixpoint treatments developed for other programming methodologies.
منابع مشابه
Grounded Fixpoints
Algebraical fixpoint theory is an invaluable instrument for studying semantics of logics. For example, all major semantics of logic programming, autoepistemic logic, default logic and more recently, abstract argumentation have been shown to be induced by the different types of fixpoints defined in approximation fixpoint theory (AFT). In this paper, we add a new type of fixpoint to AFT: a ground...
متن کاملAn effective fixpoint semantics for linear logic programs
In this paper we investigate the theoretical foundation of a new bottom-up semantics for linear logic programs, and more precisely for the fragment of LinLog (Andreoli, 1992) that consists of the language LO (Andreoli & Pareschi, 1991) enriched with the constant 1. We use constraints to symbolically and finitely represent possibly infinite collections of provable goals. We define a fixpoint sem...
متن کاملMany-valued Logic Programming and Fixpoint Semantics for Higher-order Herbrand Models
In this paper we compare the two versions of knowledge invariant transformations of the original Many-valued logic programs: the strict Annotated logic programs and the ’meta’ logic programs obtained by the ontological encapsulation [1]. We show that the first one has the higher-order Herbrand interpretations, while the last can be seen as the flattening of the first one. These two knowledge in...
متن کاملWell-Founded Semantics and the Algebraic Theory of Non-monotone Inductive Definitions
Approximation theory is a fixpoint theory of general (monotone and non-monotone) operators which generalizes all main semantics of logic programming, default logic and autoepistemic logic. In this paper, we study inductive constructions using operators and show their confluence to the well-founded fixpoint of the operator. This result is one argument for the thesis that Approximation theory is ...
متن کاملGeneral Model Theoretic Semantics for Higher-Order Horn Logic Programming
We introduce model-theoretic semantics [6] for Higher-Order Horn logic programming language. One advantage of logic programs over conventional non-logic programs has been that the least fixpoint is equal to the least model, therefore it is associated to logical consequence and has a meaningful declarative interpretation. In simple theory of types [9] on which Higher-Order Horn logic programming...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 278 شماره
صفحات -
تاریخ انتشار 2002